Closed-Loop Brain-Controlled Reaching Guided by Cortical Microstimulation

J. E. O'Doherty,1,3 M. A. Lebedev2,3 & M. A. L. Nicolelis1,2,3

1. Department of Biomedical Engineering 2. Department of Neurobiology 3. Center for Neuroengineering, Duke University, Durham, NC, USA

Background

- Monkey seated with joystick
- Visual stimuli projected on screen
- Somatosensory stimuli presented via:
 1. Vibration of joystick handle
 2. Cortical microstimulation
- Task completion requires synthesis of vision and somatic sensation

Task

- Monkey holds cursor in the center
- Somatosensory cue delivered in center target
- Two peripheral targets appear after a delay: typically 2 seconds.
- Move cursor to the correct target for reward

Implants

- Stainless Steel microwire electrodes
- Sharp tips for penetrating pia
- 32 electrodes per array in bundles of two
- 1 mm spacing between bundles
- 40 μm diameter wires for recording and 63 μm diameter wires for stimulation
- 300 μm offset between tips (larger diameter are deeper)

Electrodes

- Staines Steel microwire electrodes
- Sharp tips for penetrating pia
- 32 electrodes per array in bundles of two
- 1 mm spacing between bundles
- 40 μm diameter wires for recording and 63 μm diameter wires for stimulation
- 300 μm offset between tips (larger diameter are deeper)

Microstimulation protocol

- 50 μA biphasic pulse pairs
- Pulse-width of 150 microseconds
- 30 Hz for one to two seconds
- Stimulation in hand S1 on electrode pairs with hand or finger receptive fields
- Stimulation in hand S1 on electrode pairs with hand or finger receptive fields

Future directions

- Visually identical but microstimulation feedback is delivered on contact

Behavior with microstimulation

- BMI Predictions
- BMI with microstimulation

Acknowledgements and references

- Nathan A. Fitzsimmons, et al. Cortical microstimulation feedback is sufficient to evoke muscle contractions of the arm and hand.