Is grandmother an oscillation?

Michael P. Stryker

The realization that visual information is processed through successive stages in many separate areas of the cortex has led to a dilemma. How are the distributed representations of the visual features that have to do with a single object in the world put together so that they can create a perception or influence action? That is, when a green furry tennis ball and an ebony billiard ball are seen in the same part of the visual field, how can the colour, motion and texture properties of each ball be associated, so that the black colour and smooth texture of the billiard ball is not ascribed to the tennis ball? *Three new papers* from two laboratories, one on page 334 of this issue, provide a clue.

Several proposals have been put forward to solve this problem. A now-classic notion is that significant combinations of features are hierarchically extracted and combined in specific cortical areas specialized for the recognition of certain classes of objects; or, at the extreme, in the receptive fields of single neurons. In some higher cortical areas, there could be, for example, 'grandmother' neurons responding selectively to the precise combinations of visual features that are associated with one's grandmother. Either such cells would not be able to signal the location of stimuli very accurately or there would have to be a separate grandmother cell for each region of the visual field. It is also not clear how the many different features that might be associated with one's grandmother could be combined in any very selective way without a 'combinatorial explosion' in the numbers of cells required. This would lead to the sort of problem Little Red Riding Hood had when her grandmother failed to discriminate the wolf's grey fur, sharp white teeth and heavy breathing from her grandmother's normal benign appearance.

These shortcomings have led to an alternative notion - that the representations in the brain of various visual properties of objects in the world are combined only transiently, rather than in fixed receptive fields, in some way that makes the conjoint output of different property-specific detectors available to the mechanisms for perception or action. Some years ago, Crick suggested a mechanism by which the neurons of thalamic reticular nucleus below the cortex could unify the perceptual qualities represented in different cortical areas. He proposed that a neural 'searchlight' would simultaneously illuminate all the neurons that are activated by the same object in the world. The recent work from Gray, Singer and colleagues, reported in this issue, and elsewhere, and from Eckhorn and colleagues, raises a related possibility: that neurons in the visual cortex activated by the same object in the world tend to discharge rhythmically and in unison. Such a one-note neural harmony could, in principle at least, provide the neurons at higher cortical levels with stronger inputs so that they associate the activities of lower-order neurons with one another (see figure). If the discharges of the texture-, colour-, depth- and movement-sensitive neurons

- Four lower-order neurons providing input to one higher-order neuron. a. Neuronal activity in the lower-order neurons is shown oscillating in phase. The resulting postsynaptic potentials sum in the target cell, producing a large oscillation in its membrane potential. At the peak of this oscillation, the membrane potential of the higher-order neuron would exceed the discharge threshold, and the cell would fire rhythmic, high-frequency bursts of spikes. b. The activities in the lower-order neurons do not oscillate in phase, so the higher-order neuron receives a more nearly constant input. The resulting steady membrane potential in the higher-order neuron is below the threshold for spike discharge or would, in any case, not allow it to discharge at the frequencies characteristic of neural responses to sensory stimuli. Concerned with the tennis ball were to oscillate in phase with one another and out of phase with the billiard ball responses, this might enable perceptual mechanisms to assign the furry texture, green colour and blinding speed to the one object and the smooth texture, ebony colour and moderate speed to the other. I have made a simple estimate that, with reasonable assumptions about the duration of postsynaptic potentials, such a mechanism would enable higher-order cells to distinguish inputs from one set of neurons from those of 10 or more sets of neurons, if each set responds to different objects in the world at different phases or frequencies.

If, instead of summing, synaptic inputs can interact multiplicatively, cortical cells could detect phase-locked activity with even more sensitivity.

This new evidence provides only the first hints that the visual cortex uses such mechanisms. Gray and Singer find that visual stimulation can cause many neurons in visual cortex to discharge their action.

297
observations of rhythmcity and its corre-
lation with particular stimuli do not allow the
conclusion that the nervous system makes use of such information. This point
will be difficult to address except by demonstrating that many global aspects of
visual stimuli are accompanied by corre-
lated rhythmic discharges. In particular, it
would be intriguing to know whether a
single bar or edge produces such correlated
activity when and only when it appears as
a single object; a physical discontinuity
that does not degrade the perception of
the bar as a single object, as when the bar
is partially occluded 1. should not destroy
the correlated oscillations. It will be even
more intriguing to see whether neurons in
the different cortical areas specialized for
colour, depth, motion and so on exhibit
correlated, rhythmic discharges when
they respond to the same stimulus in the
real world.

Observations of this type could provide
compelling evidence that perceptual
mechanisms of the brain do engage in the
analysis of brain rhythms. The suggestion
that coherent oscillations in activity
identify the members of subsets of a
large neuronal population may, however,
still be an important one, even if these
subsets are not closely tied to perception.
Exploring the rhythms of the brain.
reviewed by the pioneers of electroence-
phalography but now mostly dismissed as
irrelevant to neural information proces-
sing, may even come back into fashion. L. J.
Michael P. Stryker is in the Department of
Physiology and the Neuroscience Graduate
Program, University of California Medical
School, San Francisco, California 94143, USA.