The PAR-6 Polarity Protein Regulates Dendritic Spine Morphogenesis through p190 RhoGAP and the Rho GTPase

Huaye Zhang1,* and Ian G. Macara1
1Department of Microbiology and Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
*Correspondence: hz5a@virginia.edu
DOI 10.1016/j.devcel.2007.11.020

SUMMARY

The majority of excitatory synaptic transmission in the brain occurs at dendritic spines, which are actin-rich protrusions on the dendrites. The asymmetric nature of these structures suggests that proteins regulating cell polarity might be involved in their formation. Indeed, the polarity protein PAR-3 is required for normal spine morphogenesis. However, this function is independent of association with atypical protein kinase C (aPKC) and PAR-6. Here we show that PAR-6 together with aPKC plays a distinct but essential role in spine morphogenesis. Knockdown of PAR-6 inhibits spine morphogenesis, whereas overexpression of PAR-6 increases spine density, and these effects are mediated by aPKC. Using a FRET biosensor, we further show that p190 RhoGAP and RhoA act downstream of the PAR-6/aPKC complex. These results define a role for PAR-6 and aPKC in dendritic spine biogenesis and maintenance, and reveal an unexpected link between the PAR-6/aPKC complex and RhoA activity.

INTRODUCTION

Dendritic spines are small protrusions on neurons that receive the majority of the excitatory synaptic inputs in the brain (Goda and Davis, 2003; Hering and Sheng, 2001; Sheng and Hoogenraad, 2007). The formation of these structures is essential for cognitive functions, as spine abnormalities are associated with various forms of mental retardation (Fiala et al., 2002). In addition, neurodegenerative diseases like Alzheimer’s disease usually begin with spine and synaptic loss, which is closely associated with the pure memory impairment observed in their earliest clinical phases (Selkoe, 2002). Therefore, elucidating the mechanisms of dendritic spine morphogenesis is crucial to understanding how the brain processes and stores information, and how this fails in a diseased state.

During development, the formation of spines begins with the extension of highly dynamic, filopodia-like protrusions on the dendrites. These protrusions are believed to be actively searching for their presynaptic interacting partners, and, once a contact has formed, the protrusions stabilize and mature into dendritic spines (Matus, 2005). In contrast to the microtubule-based dendritic shaft, spines are highly enriched in actin. A number of proteins that control actin dynamics, including Rho GTPases and their regulators, have been implicated in spine morphogenesis (Govek et al., 2005).

The synapse forms on the top of the spine head, where a membrane thickening called the postsynaptic density (PSD) occurs. Various neurotransmitter and adhesion receptors and structural and signaling molecules cluster within the PSD. The synapse is an asymmetric adhesive contact that bears structural and functional similarities to the apical junction complex in epithelial cells, and to the immunological synapse between T cells and antigen-presenting cells (Yamada and Nelson, 2007). Thus, a dendritic spine is a highly polarized structure, which lends credence to the notion that molecules involved in establishing epithelial polarity might also be important in the formation of dendritic spines.

The PAR polarity proteins were first discovered in a C. elegans screen for genes that are required in the initial asymmetric cell division of the zygote (Kemphues et al., 1988). Several of the partition-defective (par) gene products—PAR-3, PAR-6, and PKC-3—colocalize to the anterior end of the zygote, and the mammalian orthologs of these proteins can form a physical complex, along with Cdc42, which binds to PAR-6 (Goldstein and Macara, 2007). A conserved signaling pathway containing Cdc42, PAR-3, PAR-6, and aPKC is essential for cell polarization in different contexts ranging from asymmetric cell division, epithelial polarity, and directional migration to axon specification in neurons (Macara, 2004; Suzuki and Ohno, 2006). However, in some circumstances PAR-3 localizes separately from the PAR-6/aPKC complex and performs distinct functions (Harris and Peifer, 2005).

Previously, we discovered that PAR-3 is necessary for normal dendritic spine morphogenesis in hippocampal neurons (Zhang and Macara, 2006). PAR-3 spatially restricts the Rac guanine nucleotide exchange factor (GEF) Tiam1 to dendritic spines, thereby preventing inappropriate Rac activation. Silencing of PAR-3 by RNA interference (RNAi) results in the formation of dendritic filopodia that do not mature into spines or form synapses. Interestingly, we found that PAR-3 acts in this pathway independently of its association with aPKC (Zhang and Macara, 2006). A similar situation occurs during tight junction assembly in epithelial cells, in which PAR-3 also acts through Tiam1 on the Rac GTPase independently of binding to either aPKC or PAR-6 (Chen and Macara, 2005). What then is the function of PAR-6 and aPKC during spine morphogenesis? We have found that PAR-6 regulates dendritic spine biogenesis and maintenance rather than spine maturation. PAR-6 acts through aPKC,
which is linked to RhoA GTPase activity through the p190 RhoGAP. Taken together, these results reveal an important role for PAR-6 and aPKC in dendritic spines morphogenesis that is independent of PAR-3 and which, unexpectedly, involves the Rho GTPase.

RESULTS

PAR-6 Is Essential for Spine Morphogenesis

We earlier demonstrated that the polarity protein PAR-3 is essential for normal spine morphogenesis and that a splice variant of PAR-3 lacking the aPKC binding site (PAR-3c) can functionally replace the wild-type protein in this process (Zhang and Macara, 2006). Thus, PAR-3 acts independently of aPKC binding and phosphorylation to regulate spine maturation. However, aPKC can also interact with PAR-3 indirectly, via an association of PAR-6 with the first PDZ domain in PAR-3. To determine whether binding of PAR-6 is necessary for the function of PAR-3 in spines, we knocked down endogenous PAR-3 in hippocampal neurons and coexpressed a PAR-3 fragment (PAR-3c-C) that does not bind PAR-6. As shown previously (Zhang and Macara, 2006), depletion of PAR-3 caused the formation of multiple filopodia-like protrusions and a dramatic decrease in the number of normal, mushroom-shaped spines. Coexpression of PAR-3c-C efficiently reversed the spine formation defects in neurons depleted of PAR-3 (Figure S1; see the Supplemental Data available with this article online), suggesting that binding of PAR-6 is not necessary for the function of PAR-3 in spines. We were interested, therefore, in whether PAR-6 plays any role in spine morphogenesis, and whether such a role would be distinct from that involving PAR-3.

Initially, we examined the subcellular distribution of endogenous PAR-6C in DIV 14 cultured hippocampal neurons. As we have reported previously (Joberty et al., 2000), PAR-6C is the predominant isoform in neurons. Immunofluorescence of endogenous PAR-6C revealed a punctate staining pattern along the dendrites (Figure 1A). These puncta colocalized with PSD-95, a marker for excitatory synapses, showing that PAR-6 is synaptic. To validate the specificity of staining by the anti-PAR-6C antibody, we silenced endogenous PAR-6C in hippocampal neurons by using RNAi. ShRNAs were introduced using the pSUPER vector, and their efficiency was tested in Rat2 fibroblasts by immunoblotting (Figure 1B). ShRNA #3 and #8 both knocked down the expression of endogenous PAR-6C efficiently and were used in subsequent studies (Figure 1B and Figure S2). Both shRNAs also reduced substantially the punctate immunostaining observed in dendrites (Figure S2B, and data not shown), confirming that the puncta represent authentic, endogenous PAR-6C.

To isolate the effects on spine formation from axonal specification and neurite outgrowth, we transfected neurons with the pSUPER constructs at DIV 6–7 and imaged them at DIV 14. In each case, soluble YFP was coexpressed as a marker for transfected neurons and also to visualize cell morphology. As shown in Figure 1C, the spine density along dendrites of neurons transfected with either pSUPER-luciferase (Control) or pSUPER-PAR-6C shRNA#3 (PAR-6C KD) at DIV 6–7 and imaged at DIV 14. Yellow fluorescent protein (YFP) was coexpressed as a marker for transfected neurons and to visualize cell morphology. There was a significant reduction in the number of dendritic spines even though PAR-6C was knocked down after the neurons had formed numerous spines, suggesting that PAR-6C is necessary for spine maintenance. *p < 0.001 by Student’s t test. Error bars represent SEM of three independent experiments.
that filopodia were not induced by loss of PAR-6, as occurs when PAR-3 expression is silenced (Zhang and Macara, 2006). These results demonstrate that PAR-6C is required for spine morphogenesis and that its function is distinct from that of PAR-3, which regulates spine maturation but not spine density. Next, to determine whether PAR-6 is required for the formation or maintenance of spines, we knocked down PAR-6 at DIV 17, when neurons have formed numerous spines. Neurons were then imaged at DIV 22 to examine the effects of PAR-6 depletion. As shown in Figure 1D, silencing of PAR-6 at this stage still caused a dramatic decrease in spine density. This result indicates that PAR-6 is required for the maintenance of dendritic spines.

If PAR-6 controls spine density, one might expect that elevated PAR-6C expression would trigger the formation of supernumerary spines. Indeed, the ectopic expression of myc-tagged PAR-6C produced a higher density of spines along the dendrites, and these spines were longer than those in the control neurons. A slight increase in spine width was also observed (Figure 2A). We conclude that PAR-6C promotes spine formation and that the effect is dose dependent.

Are the supernumerary spines triggered by PAR-6C overexpression functional? To address this question, we performed FM1-43 dye uptake to evaluate the number of functional synapses in neurons either overexpressing or depleted of PAR-6C. FM1-43 is an amphipathic styryl dye that reversibly stains membranes. Therefore, when neurons are exposed to the FM dye during stimulation and are subsequently washed, only the endocytosed membranes retain the dye. As a result, only functional synapses that have undergone synaptic vesicle recycling will show FM1-43 fluorescence. Neurons that overexpress PAR-6C showed increased numbers of FM1-43 puncta, whereas PAR-6C knockdown neurons exhibited a significant decrease in the number of FM1-43 puncta, as compared to the control cells (Figures 2B and 2C). These data suggest that PAR-6C promotes the formation and maintenance of functional spines.

We next tested myc-PAR-6B, which is an isoform that is more widely expressed than PAR-6C and has been extensively studied in epithelial cells (Gao et al., 2002; Hurd et al., 2003; Yamana et al., 2003). Overexpression of this isoform produced a phenotype indistinguishable from that caused by PAR-6C, indicating that the effect is not isoform specific (Figures 3B and 3C). To identify the domains within PAR-6 that are responsible for promoting spine density, we expressed various PAR-6B mutants and analyzed their effects on spine formation (Figures 3A–3C and Figure S3). The PAR-6B ΔPro mutant lacks an essential proline residue (Pro 136) in its semi-CRIB domain and cannot effectively bind Cdc42; however, this mutant was still able to promote spine formation in a manner similar to its wild-type counterpart, indicating that the association with Cdc42-GTP is unnecessary. In contrast, when the N-terminal PB1 domain was deleted, which binds aPKC, the resulting mutant was no longer able to promote spine formation. Finally, a dominant-negative effect was seen with PAR-6BmutPDZ, which has four point mutations (K167A, P168A, L169A, and G170A) that abolish the ligand-binding capacity of the PDZ domain.

![Figure 2. Overexpression of PAR-6C Promotes Spine Morphogenesis](image-url)
To verify that the aPKC binding and the PDZ domains are required, we performed rescue experiments using the various PAR-6 mutants expressed in neurons depleted of endogenous PAR-6C (Figures 3D and 3E). Importantly, the shRNA #3 sequence targets rat PAR-6C and cannot recognize human PAR-6. First, we found that both wild-type PAR-6C and PAR-6B efficiently rescued spine biogenesis, confirming that the defects in spine formation are specifically caused by loss of PAR-6 and are not caused by off-target effects of the shRNA. Second, neither the PB1 domain mutant nor the PDZ domain mutant was able to rescue the knockdown defect, showing that these domains are both required for PAR-6 to promote spine formation. These data are consistent with a widely accepted role for PAR-6 as a targeting subunit of aPKC, in which the PDZ domain recruits substrates for phosphorylation (or, conversely, recruits aPKC to the substrates) (Goldstein and Macara, 2007). The PB1 mutant cannot form a complex with aPKC. Therefore, it will bind substrates but not recruit them to the kinase. Conversely, the PDZ mutant will not bind substrates but will sequester aPKC and disrupt its ability to phosphorylate appropriate substrates. Taken together, these data argue that spine density is controlled by the phosphorylation of an aPKC substrate that is recruited by PAR-6.

Effects of PKCζ Mutants on Spine Morphogenesis

To test this hypothesis, we examined the effects of PKCζ, one of the two mammalian atypical PKC isoforms, on spine morphogenesis (Figures 4A and 4B). Ectopic expression of a constitutively active PKCζ mutant (PKCζT410E) significantly increased the overall density of spines, similar to what was seen with PAR-6 overexpression. By contrast, a kinase-dead mutant of PKCζ (PKCζT410A) reduced the number of mature spines, but also resulted in the appearance of some filopodia-like extensions. We speculate that this effect might arise from an aPKC-driven mislocalization of PAR-3. In any case, these results support the idea that the kinase activity of PKCζ is necessary for spine morphogenesis.

We then examined whether aPKC kinase activity alone is sufficient for spine formation in the absence of the targeting information provided by PAR-6. To address this issue, we knocked down endogenous PAR-6C and tried to rescue spine morphogenesis by expressing the constitutively active PKCζT410E. However, this mutant failed to reverse the spine defect (Figures 4C and 4D) even though its expression in wild-type neurons can promote spine formation. This observation suggests that PAR-6 is needed to provide targeting information for aPKC. As a further test, we asked if expression of PKCζT410E would reverse the defect caused by the PAR-6BmutPDZ dominant-negative mutant. Again, PKCζT410E failed to rescue normal spine morphogenesis (Figures 4C and 4D). We conclude,
therefore, that PAR-6 is necessary either to recruit a target protein for phosphorylation by aPKC or, conversely, to recruit aPKC to a target.

If PAR-6 provides targeting information for aPKC, one might expect aPKC to be mislocalized in the absence of PAR-6. To test this prediction, we examined the distribution of PKC\(\zeta\)T410E in control neurons and in neurons depleted of PAR-6. As shown in Figure 4E, PKC\(\zeta\)T410E localized to spines in the control neurons, but failed to accumulate in the spines of neurons depleted of PAR-6. This result argues that PAR-6 is necessary for the proper targeting of aPKC.

Finally, to verify that aPKC functions downstream of PAR-6, we coexpressed PAR-6 with either PKC\(\zeta\)T410E or PKC\(\zeta\)T410A. Coexpression of PAR-6 with PKC\(\zeta\)T410E did not increase the number of spines (37 ± 9 spines/100 μm) beyond that induced by each construct expressed singly (36 ± 9 spines/100 μm for PAR-6; 38 ± 5 for PKC\(\zeta\)T410E; see Figures 3C, 4B, and 4C), suggesting that the two proteins function on the same pathway.
Moreover, PKC\textsubscript{z}T410A efficiently inhibited the spine formation induced by PAR-6 overexpression (Figures 4F and 4G), consistent with the idea that aPKC functions downstream of PAR-6.

RhoA Functions Downstream of PAR-6/aPKC

What are the downstream effectors of the PAR-6/aPKC complex in spine morphogenesis? We initially focused on Smurf1, an E3 ubiquitin ligase that has been reported to associate with, and be phosphorylated by, the PAR-6/aPKC complex (Wang et al., 2003). Smurf1 targets RhoA for local degradation. Therefore, the activation of Smurf1 by aPKC should reduce RhoA in the dendrites, while a decrease in aPKC activity, produced for example by knockdown of PAR-6, should elevate RhoA. We were unable to detect any differences, however, either in the total level or dendritic concentration of RhoA when PAR-6 was silenced or overexpressed in hippocampal neurons. It is unlikely, therefore, that Smurf1 is involved in the control of dendritic spine morphogenesis.

Nonetheless, RhoA activity is a pivotal regulator of spine density, because the expression of a constitutively active RhoA mutant (RhoAV14) blocked spine formation (Figure 5A), phenocopying the PAR-6 knockdown. Expression of RhoAV14 at DIV 17 also caused a dramatic loss of spines (data not shown), similar to what was observed with PAR-6C knockdown. On the other hand, a dominant-negative mutant of RhoA (N19) increased spine density along the dendrites (Figure 5A), as we had observed when PAR-6 expression was increased. Similar effects of RhoA on spine density have been reported previously (Govek et al., 2005; Tashiro et al., 2000).

A key effector of RhoA is Rho-kinase (ROCK). To see if ROCK is downstream of RhoA in regulating spine morphogenesis, we treated neurons with H-1152, a specific inhibitor of ROCK. H-1152 treatment caused an increase in spine density in control neurons, similar to what was observed with PAR-6C knockdown. On the other hand, a dominant-negative mutant of RhoA (N19) increased spine density along the dendrites (Figure 5A), as we had observed when PAR-6 expression was increased. Similar effects of RhoA on spine density have been reported previously (Govek et al., 2005; Tashiro et al., 2000).

To test whether the RhoA pathway is linked to PAR-6 function, we asked if the expression of a dominant-negative RhoA mutant could restore spine morphogenesis in cells depleted of PAR-6. Indeed, as shown in Figure 5B, RhoAN19 efficiently reversed the spine defect caused by PAR-6 silencing. To confirm that the Rho pathway acts in concert with PAR-6, we treated PAR-6-depleted neurons with H-1152. Treatment with H-1152 completely rescued the PAR-6 knockdown defect (Figure 5C). Finally, the constitutively active RhoA, RhoAV14, was able to inhibit the spine formation induced by PAR-6 (Figure 5D). We conclude, therefore, that the Rho signaling pathway is inversely coupled to PAR-6/aPKC, such that PAR-6 suppresses RhoA function. However, these data do not distinguish whether RhoA acts downstream of PAR-6 or instead acts in a parallel but independent pathway that converges on spine formation.

To address this issue, we examined endogenous RhoA activity levels using a Raichu FRET (fluorescence resonance energy transfer) biosensor (Yoshizaki et al., 2003). The Raichu RhoA probe is a fusion protein consisting of YFP plus the RhoA-binding domain (RBD) of PKN, RhoA, and CFP. When the RhoA binds GTP, it triggers an intramolecular association with the neighboring RBD, forcing the fusion protein to undergo a conformational switch. This switch brings the CFP FRET donor closer to the YFP acceptor, resulting in higher FRET efficiency. To determine whether changes in PAR-6 levels affect RhoA activity, we expressed the Raichu probe in neurons that either overexpressed or were depleted of PAR-6. Overexpression of PAR-6 caused a reproducible decrease in FRET efficiency as compared with the controls, whereas knockdown of PAR-6 resulted in a significant increase in FRET efficiency (Figures 5E and 5F). We conclude that PAR-6 negatively regulates RhoA activity.

PAR-6 Regulates Rho Activity through p190 RhoGAP

RhoA, like other small GTPases, is converted to the GTP-bound state by guanine nucleotide exchange factors (GEFs), and switched off by GTPase-activating proteins (GAPs). The GEFs are frequently autoinhibited and can be activated by signaling inputs that release the catalytic domain and relieve the inhibition (Rossman et al., 2005). In contrast, no common mechanism has yet emerged for the regulation of RhoGAPs, and some are activated while others are inhibited by upstream signals. Since PAR-6 suppresses Rho-GTP levels, we considered it unlikely that it would inhibit a constitutively active GEF, and we focused instead on the GAPs. Although there are about 70 Rho family GAP genes in the mammalian genome, many are not Rho specific, or are not expressed in neurons. However, p190A RhoGAP is expressed at high levels in the brain, is present in spines (Stakianos et al., 2007), and has been implicated in fear memory formation (Lamprocht et al., 2002; Settleman, 2003). To investigate a possible link between the PAR-6/aPKC complex and p190, we first performed endogenous coimmunoprecipitations from hippocampal lysate. A small but reproducible amount of p190 was detected in association with PKC\textsubscript{z} (Figure 6A).

Next, we silenced endogenous p190A expression by RNAi. A second isoform, p190B, is not detectably expressed in the hippocampus (Matheson et al., 2008). As illustrated in Figure 6B, the shRNA construct efficiently knocked down p190 expression in the transfected neuron as compared with a neighboring untransfected neuron. Strikingly, depletion of p190 caused a substantial reduction in spine density (Figure 6C). To determine whether the GAP activity of p190 is necessary for spine formation, neurons were transfected with a p190 mutant, which has a single amino acid mutation (R1283A) that abolishes its GAP activity (Tatsis et al., 1998). Expression of this mutant significantly reduced spine density (Figure 6D), showing that GAP activity is necessary for spine formation. The effects of p190 knockdown and the p190R1283A mutant could each be efficiently reversed by treating the neurons with H-1152 (Figures 5C and 5D), confirming that, as expected, p190 controls the Rho-ROCK pathway.

To address whether p190 is coupled to PAR-6/aPKC function, we coexpressed PAR-6 with either wild-type p190 or the GAP-deficient p190 mutant. The mutant significantly inhibited the increase in spine density caused by the elevation in PAR-6 level (Figure 6E), consistent with the idea that p190 RhoGAP might mediate the action of PAR-6 in promoting spine formation. Next, we asked whether PAR-6 regulates RhoA activity through the p190 RhoGAP. FRET efficiency of the Raichu probe was examined in neurons depleted of p190. Importantly, silencing of p190 caused a significant increase in FRET efficiency, indicating...
an increase in RhoA activity (Figures 6F and 6G). Thus, p190 is a pivotal RhoGAP required for maintenance of low RhoGTP in hippocampal neurons. We then examined the FRET efficiency in neurons coexpressing myc-PAR-6C plus the p190 shRNA. If PAR-6 decreases Rho activity through p190, knockdown of the RhoGAP should prevent this decrease, and we would predict...
that the FRET efficiency in these neurons would be similar to that in neurons expressing p190 shRNA alone. On the other hand, if PAR-6 acts on Rho through a distinct pathway, independent of p190, then depletion of p190 would not abolish the decrease, and the neurons would show lower FRET as compared with p190 shRNA-expressing neurons. As demonstrated in Figures 6F and 6G, neurons coexpressing PAR-6 and p190 shRNA showed similar FRET efficiency to that of neurons expressing p190 shRNA alone. We conclude, therefore, that PAR-6 regulates RhoA activity through p190 RhoGAP.

DISCUSSION

Previously, we had shown that the polarity protein PAR-3 is essential for spine maturation and operates through the small GTPase Rac, which is a key regulator of the actin cytoskeleton (Zhang and Macara, 2006). The same signaling pathway accounts for PAR-3 function in the assembly of epithelial tight junctions (Chen and Macara, 2005). Surprisingly, however, although PAR-3 is often coupled in a signaling complex with PAR-6 and aPKC, neither protein needs to bind PAR-3 in order to drive tight

Figure 6. p190 RhoGAP Functions Downstream of PAR-6/aPKC in Spine Morphogenesis

(A) Coimmunoprecipitation of endogenous PKCζ and p190 RhoGAP from hippocampal neurons. Hippocampal neurons (DIV 8) were lysed and immunoprecipitated with either a GFP antibody or a PKCζ antibody. Immunoprecipitates were washed and analyzed by SDS-PAGE and western blot. IP: immunoprecipitation. WB: western blot.

(B) Efficiency of the p190A RhoGAP shRNA construct. Hippocampal neurons were transfected with YFP and pSUPER-p190A shRNA. At DIV 14 cells were fixed and immunostained for p190 RhoGAP. The staining intensity was significantly reduced in pSUPER-p190A shRNA expressing neurons as compared with nearby untransfected neurons. IF: immunofluorescence.

(C) Knockdown of p190 RhoGAP reduces spine density. Hippocampal neurons were transfected with either pSUPER-luciferase or pSUPER-p190 shRNA. YFP was coexpressed to visualize the transfected cells. *p < 0.001 by Student’s t test.

(D) The GAP activity of p190 RhoGAP is necessary for spine formation. Hippocampal neurons were transfected with an empty vector (Control), wild-type p190 RhoGAP, or a GAP-deficient mutant of p190 RhoGAP (p190 RhoGAP R1283A). YFP was coexpressed to visualize the transfected cells. "p < 0.001 by Student’s t test.

(E) P190 RhoGAP functions downstream of PAR-6. Hippocampal neurons were cotransfected with PAR-6B and either wild-type or GAP-deficient p190 RhoGAP. The GAP-deficient p190 RhoGAP inhibited the spine formation induced by PAR-6B overexpression. *p < 0.001 by Student’s t test.

(F) PAR-6 regulates RhoA activity through p190 RhoGAP. Hippocampal neurons were transfected with either an empty vector plus pSUPER-p190 shRNA, or myc-PAR-6C plus pSUPER-p190 shRNA. pRaichu-RhoA was coexpressed to visualize RhoA activity. Representative FRET images are shown.

(G) Quantification of mean FRET values shown in (F). *p < 0.001 by Student’s t test.

Error bars represent SEM of three independent experiments.
PAR-6 Regulates Spine Biogenesis through RhoA

PAR-6 is an adaptor protein that is believed to function as a scaffold, bringing aPKC and its substrate together to facilitate downstream signaling. In this study, we found that both the N-terminal PB1 domain of PAR-6, which binds aPKC, and the PDZ domain, which binds substrates, are each required for normal spine morphogenesis. What upstream inputs regulate PAR-6 in neurons remains unclear. In other systems, such as epithelial cysts and neuronal progenitors, PAR-6 is recruited to the cortex by Cdc42-GTP, which associates with the CRIB domain of PAR-6. However, we found that a mutant of PAR-6, which is defective in Cdc42 binding, can drive normal spine morphogenesis. Moreover, we see little effect on spine density when a dominant-negative mutant of Cdc42 is expressed (data not shown). Therefore, the requirement for PAR-6 in spine morphogenesis seems to be independent of Cdc42.

Unexpectedly, activation of the PAR-6/aPKC signaling pathway facilitates spine biogenesis and maintenance through RhoA. A dominant-negative Rho mutant overcame the effect of silencing of PAR-6. Previously, PAR-6 has been shown to regulate local RhoA protein levels through association with an E3 ubiquitin ligase, Smurfl1 (Wang et al., 2003). However, we did not detect any changes in RhoA protein levels when PAR-6 levels were manipulated in the neurons. Instead, RhoA activity was altered by PAR-6, as visualized using a FRET probe that senses the balance of GAP and GEF activities in the cell. This effect was mediated by the p190A RhoGAP, which is expressed at high levels in the brain (Brouns et al., 2000). It remains unclear exactly how PAR-6/aPKC regulates p190 RhoGAP. One possibility is that PKCζ directly phosphorylates p190 on serine residues to stimulate GAP activity. Alternatively, PKCζ could target a p190 regulatory factor. We have examined a potential role for the Src family of tyrosine kinases, which are major upstream activators of p190 (Brouns et al., 2001; Moon and Zheng, 2003), in PAR-6/aPKC induced spine morphogenesis. Treatment of neurons with a Src family inhibitor PP2 had no effect on PAR-6-induced spine formation (data not shown), however, suggesting that Src is not involved in this pathway.

A distinct RhoGAP called oligophrenin-1 has also been implicated in spine morphogenesis and is mutated in some cases of X-linked mental retardation. Notably, however, oligophrenin-1 controls spine length rather than biogenesis (Govek et al., 2005). Other studies have implicated a variety of other Rho family regulators in spine morphogenesis, including Kalirin, a GEF that activates multiple GTPases in this family (but not RhoA or RhoB) (Penzès et al., 2001). Depletion of Kalirin also reduces spine density, but through an unknown mechanism (Ma et al., 2003). Additionally, Tiam1/2 and jüPIX, which are Rac GEFs, are necessary for normal spine maturation (Zhang and Macara, 2006; Zhang et al., 2003). Together, these data point to an exquisite spatiotemporal control over multiple small GTPases, most of which impact actin dynamics.

The PAR-3/6 polarity complex is involved in cell polarity establishment in many contexts from worms to humans; however, the mechanisms by which this complex functions have not been fully elucidated. While in some cases the proteins appear to act together, or function in the same process (Nakaya et al., 2000; Ooshio et al., 2007; Watts et al., 1996), in others they do not colocalize and may function independently (Harris and Peifer, 2005). Dendritic spine morphogenesis provides an ideal model in which to address this dichotomy. A striking conclusion is that both PAR-3 and PAR-6/aPKC modulate the actin cytoskeleton through Rho family GTPases, but that they operate on distinct steps in spine morphogenesis, and through different GTPases. While PAR-3 spatially sequesters Tiam1 and restricts Rac activation, PAR-6 functions through p190 RhoGAP to suppress Rho activation. Moreover, the two GTPases have opposing effects: while Rac activity is essential for spine maturation, Rho activity suppresses spine biogenesis. Elucidation of the upstream regulators of the PAR-3/6 complex, possibly including neurotransmitter receptors and other cell surface receptors, will shed more light on the role of PAR proteins in spine morphogenesis.

EXPERIMENTAL PROCEDURES

Plasmids
PAR-6B and PAR-6C constructs have been described previously (Gao et al., 2002; Joberty et al., 2000). PAR-6C and p190 RhoGAP shRNA constructs were generated by inserting the following annealed oligonucleotides into the pSUPER vector. PAR-6 shRNA#3: 5′-gatccccCAAGCTTAAATTGTGTTattcaagagaTACCACTATTACGGTTGtttttggaaa-3′ (forward), 5′-agcttttccaaaacCAACGGTTAATGTGTTTTatttcaagagaTATTAAGCTGTGTTtttttggaaa-3′ (reverse). The PAR-3 shRNA#3 construct has been described previously (Zhang and Macara, 2006). PKCζ constructs were provided by Margaret Chou (University of Pennsylvania, Philadelphia, PA). The p190A RhoGAP constructs have been described previously (Tatsis et al., 1998). The Raichi RhoA biosensor was a gift from Dr. Michiyuki Matsuda (Kyoto University, Kyoto, Japan).

Reagents and Antibodies
The primary antibodies used in this study include goat polyclonal anti-PAR-6C (T-20 from Santa Cruz, 1:100 for immunostaining), rabbit polyclonal anti-PAR-6C (H-90 from Santa Cruz, 1:100 for immunostaining and 1:1000 for western blotting), rabbit polyclonal PAR-3 antibody (2ymed, 1:2000), monoclonal anti-p190A RhoGAP (BD Biosciences, 1:200). Secondary antibodies used include FITC-conjugated donkey anti-goat IgG, Texas Red-conjugated sheep anti-mouse IgG, and Alexa594-conjugated goat anti-mouse IgG. The ROCK inhibitor H-1152 has been described previously (Chen and Macara, 2005).
Hippocampal neurons were fixed and permeabilized simultaneously in 100% methanol for 20 min at room temperature for 15 min, and then in phosphate-buffered saline (PBS) overnight at 4°C. After blocking with 10% BSA in PBS for 1 hr at room temperature, the neurons were incubated with primary antibodies diluted in 3% BSA in PBS overnight at 4°C. Neurons were then washed and incubated with secondary antibodies for 1 hr at room temperature. Coverslips were then washed and mounted using Gel/Mount (Biomedica Corp., Foster City, CA). FM dye uptake experiments were performed as previously described (Zhang and Macara, 2006). Epifluorescence images were collected using an inverted microscope (Nikon TE-200) with a 60× water-immersion lens (Plan Achromatic, NA 1.2) coupled to a CCD camera (Hamamatsu Orca), controlled by Openlab 5.0.1 software (Improvision, Boston, MA). Spine density and spine morphology were quantified as previously described (Zhang and Macaca, 2006). For spine density, 80–100 primary and secondary dendrites from 15–20 neurons were quantified for each experimental condition. For spine length and width, over 300 spines from 15–20 neurons were quantified for each experimental condition. A two-tailed, two-sample, unequal variance Student’s t test was used to calculate the p values.

ACKNOWLEDGMENTS

We would like to thank Margaret Chou (University of Pennsylvania, Philadelphia, PA) and Michiyuki Matsuda (Kyoto University, Kyoto, Japan) for generously providing reagents. This work was supported by grant GM 070902 from the National Institutes of Health, and in part by the Alzheimer’s and Related Diseases Research Award Fund from the Virginia Center on Aging. H.Z. was supported in part by the John Douglas French Alzheimer’s Foundation postdoctoral fellowship.

Received: July 10, 2007
Revised: November 1, 2007
Accepted: November 27, 2007
Published: February 11, 2008

REFERENCES

Neuronal Culture and Transfection

Hippocampal cultures were prepared and transfected with calcium phosphate precipitation as previously described (Zhang et al., 2003). For transfections involving more than one plasmid, the expression of each construct was confirmed by immunofluorescence, and coexpression was found to occur in >90% of the neurons.

Immunofluorescence Microscopy and Image Quantification

Hippocampal neurons were fixed in 4% paraformaldehyde with 4% sucrose in PBS at room temperature for 15 min, and then permeabilized in 0.2% Triton X-100 in PBS for 5 min. Alternatively, they were fixed and permeabilized simultaneously in 100% methanol for 20 min at −20°C. After blocking with 10% BSA in PBS for 1 hr at room temperature, the neurons were incubated with primary antibodies diluted in 3% BSA in PBS overnight at 4°C. Neurons were then washed and incubated with secondary antibodies for 1 hr at room temperature. Coverslips were then washed and mounted using Gel/Mount (Biomedica Corp., Foster City, CA). FM dye uptake experiments were performed as previously described (Zhang and Macara, 2006).

Immunoprecipitation and Western Blotting

Immunoprecipitations and western blotting were done as described previously (Zhang and Macara, 2006).

Supplemental Data

Supplemental data include four figures showing that (1) a mutant of PAR-3, which is deficient in binding PAR-6, can rescue spine formation in PAR-3-depleted neurons; (2) PAR-6C expression is efficiently silenced by shRNAs in neurons; (3) the PAR-6 PDZ domain is required for stimulating spine formation; and (4) Rho kinase functions downstream of p190 RhoGAP and RhoA in dndritic spine biogenesis. They can be found with this article online at http://www.developmentalcell.com/cgi/content/full/14/2/216/DC1/.

