 postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis

Michael A. Sutton, Anne M. Taylor, Hiroshi T. Ito, Anh Pham, and Erin M. Schuman

1 Division of Biology 114-96
2 Howard Hughes Medical Institute
California Institute of Technology, Pasadena, CA 91125, USA
3 Present address: Molecular and Behavioral Neuroscience Institute and Department of Molecular and Integrative Physiology, 5067 BSRB, University of Michigan, Ann Arbor, MI 48109-2200, USA.
*Correspondence: schumane@its.caltech.edu
DOI 10.1016/j.neuron.2007.07.030

Summary

Activity-dependent regulation of dendritic protein synthesis is critical for enduring changes in synaptic function, but how the unique features of distinct activity patterns are decoded by the dendritic translation machinery remains poorly understood. Here, we identify eukaryotic elongation factor-2 (eEF2), which catalyzes ribosomal translocation during protein synthesis, as a biochemical sensor in dendrites that is specifically and locally tuned to the quality of neurotransmission. We show that intrinsic action potential (AP)-mediated network activity in cultured hippocampal neurons maintains eEF2 in a relatively dephosphorylated (active) state, whereas spontaneous neurotransmitter release (i.e., miniature neurotransmission) strongly promotes the phosphorylation (and inactivation) of eEF2. The regulation of eEF2 phosphorylation is responsive to bidirectional changes in miniature neurotransmission and is controlled locally in dendrites. Finally, direct spatially controlled inhibition of eEF2 phosphorylation induces local translational activation, suggesting that eEF2 is a biochemical sensor that couples miniature synaptic events to local translational suppression in neuronal dendrites.

Introduction

Recent work has implicated local dendritic protein synthesis in many enduring forms of synaptic plasticity, such as long-term potentiation and long-term depression (e.g., Kang and Schuman, 1996; Huber et al., 2000; Bradshaw et al., 2003), although the means by which synaptic activity is coupled to the protein synthetic machinery in dendrites remains poorly understood. The fact that these forms of synaptic modification require different patterns of synaptic activity for their induction raises the question of how the local translational machinery decodes these unique activity patterns. Here, we explore this issue in the context of endogenous levels of two qualitatively distinct forms of synaptic transmission: (1) action potential (AP)-triggered release of neurotransmitter and (2) miniature synaptic transmission (minis) mediated by spontaneous, AP-independent neurotransmitter release (Fatt and Katz, 1952). Previous results have shown that these two forms of neurotransmission regulate local translation in opposite directions—blocking APs alone inhibits, whereas blocking both APs and minis stimulates, dendritic protein synthesis (Sutton et al., 2004, 2006). These observations suggest that neuronal dendrites possess a biochemical sensor that is specifically tuned to miniature synaptic transmission and capable of engaging the dendritic translation machinery.

In principle, this sensor could be represented by a general signaling pathway that is broadly coupled to protein translation, or alternatively, it could be a signal that is dedicated to the regulation of protein translation machinery itself. One candidate in the latter category is eukaryotic elongation factor-2 (eEF2) and its associated kinase, Ca2+/calmodulin-dependent protein kinase III (CAMKIII; Nairn and Palfrey, 1987), now known as eEF2 kinase. eEF2 catalyzes ribosomal translocation during polypeptide elongation. Phosphorylation of eEF2 at Thr56 strongly inhibits its activity, thereby inhibiting protein synthesis (Ryazanov et al., 1988; Redpath et al., 1993). In addition, eEF2 phosphorylation is known to be stimulated by strong activation of ionotropic glutamate receptors (GluRs; Marin et al., 1997; Scheetz et al., 2000; Chotiner et al., 2003) and can be regulated in isolated synaptic biochemical fractions (Scheetz et al., 2000; Carroll et al., 2004). These findings raise the possibility that eEF2 phosphorylation might serve to couple particular patterns of synaptic input to local translational suppression in neuronal dendrites.

Here, we demonstrate that eEF2 is a biochemical sensor tuned to ongoing levels of miniature synaptic transmission in hippocampal neurons. Similar to the regulation of dendritic protein synthesis, basal AP-dependent
and miniature transmission regulate eEF2 phosphorylation in opposite directions, with miniature events positively associated with the amount of eEF2 that is in its phosphorylated (translationally inactive) state. The regulation of eEF2 phosphorylation by miniature transmission is bidirectional—blocking minis markedly reduces, whereas enhancing minis stimulates, eEF2 phosphorylation. Moreover, miniature events regulate eEF2 locally in dendrites, and this regulation in turn inhibits dendritic translation in a spatially specific fashion. Taken together, our results suggest that eEF2 is a local sensor of miniature synaptic activity in dendrites that serves to couple this form of neurotransmission to local translational suppression.

RESULTS

Miniature Synaptic Events Inhibit Dendritic Protein Synthesis Locally

Previous work has shown that AP-dependent and miniature synaptic transmission regulate dendritic protein synthesis in opposite directions—blocking APs with tetrodotoxin (TTX) inhibits dendritic translation, whereas blocking miniature events stimulates dendritic protein synthesis (Sutton et al., 2004, 2006). Bath application of TTX, however, blocks both presynaptic and postsynaptic APs. To confine the effects of TTX to presynaptic neurons, we used a microfluidic chamber (Taylor et al., 2005) in which presynaptic or postsynaptic neurons can be fluidically isolated (Figures 1A and 1B). Application of TTX to the presynaptic compartment blocked spiking of presynaptic neurons but did not prevent postsynaptic neurons from spiking (Figure 1C). We then followed the presynaptic TTX application with postsynaptic APV to examine the effects of blocking the NMDA receptor (NMDAR)–mediated component of miniature neurotransmission on dendritic protein synthesis. Time-lapse imaging of dendrites expressing a fluorescent translation reporter (Figure 1D; Aakalu et al., 2001) revealed that, whereas control dendrites treated with TTX alone exhibited a small decline in fluorescence over time, inhibition of NMDAR minis resulted in an increase in dendritic protein synthesis (Figures 1E and 1F). These results indicate that the translational activation accompanying mini blockade is evident during selective elimination of presynaptic APs.

To examine the spatial specificity of this translational regulation, we used a dual micropipette delivery system to locally perfuse different dendritic regions of conventionally cultured neurons expressing the dendritic protein synthesis reporter. Pyramidal-like hippocampal neurons in culture were perfused continuously in HEPES-buffered saline (HBS) containing TTX (1 μM) to block all AP–induced evoked neurotransmission. After a baseline image series was taken, dendritic segments were locally perfused with TTX plus a cocktail of GluR antagonists (the AMPA receptor [AMPA] antagonist, CNQX [40 μM] and the NMDAR antagonist APV [60 μM]), and changes in the rate of reporter synthesis over time were monitored. A fluorescent dye (Alexa 568) was included in the delivery perfusate to monitor the perfusion area throughout the experiment. We compared changes in reporter expression in the treated dendritic segment with those of other segments of the same dendrite outside the perfused area both prior to and following local perfusion. As shown in Figures 2A–2D, we found that the change in reporter expression in the treated area was initially comparable with that of other segments of the same dendrite (at t = 0 min), but following local mini blockade, perfused areas demonstrated a progressive increase in reporter expression over the next 100 min (Figures 2B–2D). Restricted perfusion of vehicle alone (Figures 2E and 2F) was ineffective in altering local reporter synthesis, and the stimulation of local protein synthesis by mini blockade was completely prevented by bath application of the protein synthesis inhibitor anisomycin (40 μM; Figure 2F). These results indicate that local blockade of excitatory miniature neurotransmission enhances dendritic protein synthesis in a spatially specific fashion.

eEF2: A Biochemical Sensor Uniquely Regulated by Miniature Neurotransmission

How do postsynaptic neurons distinguish minis from AP-driven input, and how is this distinction conveyed to the translation machinery in dendrites? To begin to address this question, we first examined the regulation of two signaling pathways strongly linked to translational control in most eukaryotic systems: the ERK-MAPK and PI3 kinase pathways (for reviews, see Holland, 2004; Ruggero and Sonenberg, 2005). We measured the phosphorylation status of ERK isoforms and Akt, a well-known downstream target of the PI3 kinase pathway, under conditions of AP block alone (with TTX) or block of both APs and excitatory miniature neurotransmission (TTX+CNQX+APV). Whereas the phosphorylation of Akt was unaltered by either manipulation, the phosphorylation (and presumably activity) of both ERK isoforms (p42 and p44) exhibited strong activity sensitivity: phosphorylation was depressed by AP blockade (Figure 3A) and exhibited an even stronger depression when minis were also blocked. These results identify the ERK-MAPK signaling pathway as a system that is highly sensitive to levels of postsynaptic activity, but it does not appear differentially responsive to evoked and spontaneous neurotransmission.

We next examined if posttranslational regulation of eEF2 accompanies mini blockade. eEF2 catalyzes ribosomal translocation during polypeptide elongation, and phosphorylation of eEF2 near the N terminus (at Thr56) is known to strongly inhibit its activity in the elongation phase of protein synthesis (Ryazanov et al., 1988; Redpath et al., 1993). We found that unlike ERK phosphorylation, the regulation of eEF2 phosphorylation by AP-dependent and miniature neurotransmission was both qualitatively and quantitatively distinct. Relative to control, AP blockade alone induced significantly greater phosphorylation of eEF2 at Thr56, whereas additional blockade of miniature transmission produced significantly diminished levels of eEF2 phosphorylated at that site.
Figure 3A. Total levels of eEF2 protein were not different between the groups, suggesting that minis regulate eEF2 phosphorylation posttranslationally. These results indicate that eEF2 phosphorylation is differentially tuned to AP-dependent and miniature synaptic transmission, and the direction of the changes are consistent with eEF2 playing a causal role in the local translational suppression mediated by excitatory miniature events.

Bidirectional Regulation of eEF2 Phosphorylation by Miniature Synaptic Transmission

If eEF2 is a sensor of miniature neurotransmission, then an increase in Thr56 phosphorylation should occur when miniature transmission is enhanced. To address this question, we used α-latrotoxin (α-LTX), which is known to stimulate the release of predockeed synaptic vesicles from presynaptic terminals (e.g., Ceccarelli et al., 1973). In whole-cell voltage-clamp-clip recordings (n = 8), we confirmed that a low concentration of α-LTX (100 μM) in combination with 0.1 mM LaCl3 to prevent formation of α-LTX pores; Ashton et al., 2001) stimulates miniature release by approximately 1.5- to 2-fold (Figure 3B1; see also Sutton et al., 2004). We thus examined whether augmenting miniature neurotransmission enhances eEF2 phosphorylation during AP blockade. As shown in Figure 3B, treatment with TTX alone enhanced eEF2 phosphorylation
relative to untreated controls, but additional treatment with α-LTX produced a significantly greater phosphorylation of eEF2 that was sustained for at least 60 min. In contrast, block of miniature synaptic transmission with GluR antagonists again produced significantly diminished levels of p-eEF2 relative to control. Importantly, the effect of α-LTX was lost when minis were blocked postsynaptically, indicating that its positive effects on eEF2 phosphorylation require the integrity of miniature neurotransmission. Taken together, these results indicate that the phosphorylation of eEF2 is bidirectionally regulated by miniature synaptic transmission.

The phosphorylation of eEF2 at Thr56 is catalyzed by eEF2 kinase, a Ca^{2+}/calmodulin-dependent protein kinase (Nairn and Palfrey, 1987). Since NMDARs, rather than AMPARs, are the principal source of activity-dependent Ca^{2+} influx at synapses, we next examined the role of these different receptor types in mediating eEF2 phosphorylation during miniature transmission (Figure 3C).

We found that blocking only the NMDAR component of miniature neurotransmission (TTX+APV) was sufficient to inhibit eEF2 phosphorylation during AP blockade, and the additional blockade of AMPARs (TTX+CNQX+APV) did not significantly alter the magnitude of this effect. These results suggest that the regulation of eEF2 phosphorylation by minis is primarily downstream of NMDAR activation.

To further validate the role of NMDAR minis in regulating eEF2 phosphorylation, we examined whether blocking voltage-gated Ca^{2+} channels that support AP-triggered neurotransmitter release would also enhance eEF2 phosphorylation at Thr56. Similar to the effects of direct AP blockade (with TTX), neurons treated with antagonists to the Ca^{2+} channels associated with evoked transmission at hippocampal synapses (N-type channel blocker ω-conotoxin GVIA, 1 μM, and the P/Q-type blocker ω-agatoxin IVA, 200 nM; Wheeler et al., 1994) exhibited increased levels of p-eEF2 relative to untreated controls. As before,
Figure 3. Bidirectional Regulation of eEF2 Phosphorylation by Miniature Synaptic Transmission

(A) To examine potential regulation of translation-relevant signaling pathways by miniature neurotransmission, neurons were either untreated (control) or treated with TTX (2 μM) for 12 hr with or without mini blockade (CNQX [40 μM] + APV [50 μM]) for the last 2 hr. Representative western blots (top) and summary data (below) using antibodies specific for dually phosphorylated (Thr202/Tyr204) and total p42/p44 MAPK, phosphorylated (Ser473) and total Akt, and phosphorylated (Thr56) and total eEF2 are shown. Whereas PI3 kinase signaling (using phosphorylated Akt as a downstream readout) was unaffected by either condition of activity blockade, p42/p44 MAP kinase signaling was strongly depressed by AP blockade alone, and even more so by the additional blockade of miniature neurotransmission (TTX+CNQX+APV). By contrast, eEF2 was regulated in opposite directions by AP versus mini blockade: TTX alone lead to significantly enhanced levels of p-eEF2 (the inactive form), whereas mini blockade lead to significantly diminished levels of p-eEF2 (i.e., a larger proportion of active eEF2). Data are from eight independent experiments.

(B) To examine if the regulation of eEF2 phosphorylation by minis is bidirectional, neurons were treated with TTX with or without mini blockade as in (A), and additionally challenged with α-latrotoxin (α-LTX; 100 pM) to stimulate miniature transmission. (B1) Representative whole-cell voltage-clamp recording demonstrating the frequency of mEPSCs in the same neuron in the presence of TTX alone (baseline), 10 min after addition of 100 pM α-LTX, and 5 min following addition of CNQX+APV. Scale bar, 100 ms, 10 pA. (B2) Stimulating miniature transmission with α-LTX significantly enhanced eEF2 phosphorylation; this effect required the integrity of miniature synaptic activity—mini blockade with CNQX+APV completely prevented the increase in p-eEF2 with α-LTX.

(C) Blockade of the NMDAR component of miniature neurotransmission alone (TTX+APV) produced comparable decreases in eEF2 phosphorylation to blocking both the AMPAR and NMDAR components, suggesting that the regulation of eEF2 by excitatory miniature transmission is primarily downstream of the NMDARs.

(D–F) To assess whether AP blockade enhances eEF2 phosphorylation in dendrites, neurons were either untreated (control, n = 33) or treated with TTX (2 μM) for 2.5 hr (n = 31) prior to fixation and labeling with an antibody specific for p-eEF2. To examine if miniature transmission promotes eEF2 phosphorylation in dendrites, neurons were treated with TTX (2 μM; 2.5 hr) either alone (n = 31) or coincident with APV (60 μM; n = 33) or CNQX (40 μM) + APV (n = 33) over the last 1.5 hr. (D and E) Representative straightened dendrites from untreated controls and each of the above treatment conditions; color look-up table indicates p-eEF2 immunofluorescence intensity. (F) Mean (±SEM) change in dendritic p-eEF2 intensity relative to average control (left) or average in TTX alone (right). TTX alone led to significantly elevated levels of p-eEF2 in dendrites; coincident mini blockade led to significantly diminished dendritic levels of p-eEF2. For all panels, *p < 0.05 versus control; **p < 0.05 versus TTX alone.

eEF2 and Dendritic Protein Synthesis
coincident blockade of NMDARs produced the opposite effect—significantly diminished levels of p-eEF2 (Figure S1 in the Supplemental Data available with this article online). Thus, the differential regulation of eEF2 phosphorylation by AP-dependent and miniature neurotransmission revealed in our earlier experiments is not strictly dependent on blocking APs per se, but rather on evoked neurotransmitter release.

Minis Regulate eEF2 Phosphorylation in Neuronal Dendrites

To further examine activity-dependent eEF2 phosphorylation, we stained neurons with an antibody specific for p-eEF2 (Marin et al., 1997) and examined the levels of p-eEF2 in the dendrites of neurons treated with AP blockade alone or a coincident blockade of miniature synaptic transmission (Figure 3D–3F). Similar to our biochemical experiments, neurons treated with TTX alone exhibited marked elevation of p-eEF2 in dendrites relative to untreated controls (Figure 3D). Coincident blockade of both AMPAR and NMDAR-dependent miniature neurotransmission (TTX+CNQX+APV) during TTX treatment strongly counteracted the increase in eEF2 phosphorylation observed with AP block alone. Again, this effect was primarily mediated by NMDARs, since selective blockade of NMDAR miniature neurotransmission (TTX+APV) largely accounted for the decrease in p-eEF2 levels in dendrites (Figures 3E and 3F). Together, these results demonstrate that ongoing miniature synaptic transmission, acting primarily through NMDAR activity, stimulates eEF2 phosphorylation in neuronal dendrites.

Minis Regulate eEF2 Phosphorylation Locally in Dendrites

We next asked whether minis can regulate eEF2 phosphorylation locally in dendrites. To address this, we blocked APs in the entire dish (by bath application of TTX) and then locally blocked NMDARs using restricted perfusion of APV. Post hoc immunostaining for p-eEF2 revealed that local blockade of NMDAR minis (for 60 min) resulted in a decrease in p-eEF2 in the treated area relative to adjacent dendritic segments (Figures 4A–4E), whereas local perfusion of vehicle alone had no effect on p-eEF2 expression (Figure 4E). Conversely, local enhancement of miniature synaptic transmission by spatially restricted delivery of α-LTX during global AP blockade produced the opposite effect—a specific increase in p-eEF2 levels in perfused dendritic segments relative to other dendritic segments (Figures 5A–5E). These effects on local p-eEF2 levels were not due to redistribution of eEF2 in dendrites, since the relative levels of total eEF2, independent of the phosphorylation state, were not altered by restricted perfusion of either APV or α-LTX (Figure 5F).

Together, these results indicate that the phosphorylation of eEF2 at Thr56 is bidirectionally and locally regulated in neuronal dendrites.

The Regulation of eEF2 Phosphorylation by Minis Locally Controls Translation in Dendrites

The above results indicate that ongoing miniature synaptic transmission potently regulates eEF2 phosphorylation, primarily via the activity of NMDARs. Given that this

![Coated tick image](https://example.com/coatedtick.png)
phosphorylation inhibits eEF2 function, we hypothesized that activation of eEF2 kinase by NMDAR minis contributes to the translational suppression that miniature events normally provide. If so, then inhibiting the kinase should be sufficient to stimulate translation. To address this question, we took advantage of two distinct eEF2 kinase inhibitors, rottlerin (Gschwendt et al., 1994) and NH125 (Arora et al., 2003), and examined their effect on protein synthesis (using the reporter described above) in dendrites when APs were blocked. After acquiring a baseline image in the presence of TTX alone, neurons were acutely challenged with either rottlerin (5 μM), NH125 (10 μM), or vehicle (TTX alone) and imaged 60 and 120 min later. While neurons maintained in TTX alone exhibited stable levels of reporter expression in distal dendrites, those acutely challenged with rottlerin or NH125 each exhibited marked increases in dendritic reporter expression over time (Figures 6A and 6B). To examine if these changes in reporter expression were due to enhanced protein synthesis, we repeated the same experiment in the presence of the protein synthesis inhibitor anisomycin (40 μM). Reporter expression in neurons treated with anisomycin diminished substantially over time, and importantly, the rate of reporter loss was nearly identical under the three conditions examined (Figures 6C and 6D). These results indicate that the increase in reporter expression observed with rottlerin and NH125 cannot be attributed to their effects on PKC.

Given that under conditions of intact miniature transmission, direct inhibition of eEF2 kinase stimulates dendritic protein synthesis, we next asked whether the local
regulation of eEF2 phosphorylation by miniature neurotransmission is sufficient to provide spatially specific control of dendritic translation. After a baseline image series was acquired in the presence of bath-applied TTX, dendritic segments were locally perfused with TTX+NH125 to block eEF2 kinase in a spatially defined area. For locally treated dendrites, we compared changes in reporter expression in the treated dendritic segment with those of other dendritic segments outside the perfused area both prior to and 0–80 min following local perfusion of NH125. For dendrites that did not pass through the perfusion area (untreated), we compared changes in reporter expression in an area of identical size and distance from the cell soma as the treated dendrites from the same neurons. We found that the change in reporter expression in the treated area was initially comparable to that of other segments of the same dendrite (t = -20 to 0 min), but following local NH125 perfusion, treated areas demonstrated a progressive increase in reporter expression over the next 80 min (Figures 7A–7C). By contrast, no such differential effect was observed in untreated dendrites (Figure 7D) from the same neurons, and local perfusion of TTX alone also did not alter reporter synthesis locally (Figure 2E), indicating that the marked increase in local reporter expression was specifically due to NH125 treatment. These results thus indicate that eEF2 kinase activity not only exerts control over dendritic protein synthesis, but that it does so in a spatially limited manner.

DISCUSSION

We have demonstrated that eEF2 acts as a local biochemical sensor for miniature synaptic transmission, serving to couple this form of neurotransmission to local translational suppression in dendrites. Other studies have demonstrated a strong relationship between phosphorylation of eEF2 and translational suppression in cultured neurons (Marin et al., 1997), synaptic biochemical fractions (Scheetz et al., 2000), or hippocampal slices (Chotiner et al., 2003) in response to intense activation of ionotropic GluRs. Here, we find that eEF2 phosphorylation driven by miniature neurotransmission acts to constrain neuronal protein synthesis, working locally within intact neuronal dendrites to suppress translation in a spatially specific fashion. Interestingly, we have also found that intrinsic AP-dependent network activity in cultured hippocampal neurons maintains eEF2 in a relatively dephosphorylated (active) state, suggesting that basal levels of AP-dependent and miniature neurotransmission regulate eEF2 in opposite directions, similar to their opposing influences on dendritic protein synthesis (Sutton et al., 2004). Thus, while eEF2 phosphorylation is clearly engaged by intense increases in AP-triggered neurotransmission, its responsiveness to AP-dependent and miniature synaptic turnover in the absence of protein synthesis was similar among treatment groups. Fluorescence intensity is indicated by the color look-up table in (C).
transmission is qualitatively distinct during periods of normal AP-triggered network activity.

eEF2 Is a Biochemical Sensor Tuned to Local Miniature Synaptic Transmission

In recent years, it has become clear that different activity-driven signaling pathways at synapses are capable of encoding particular features of the activity patterns that activate them. For example, CAMKII, a protein kinase strongly implicated in the induction of long-term potentiation (e.g., Malinow et al., 1989; Silva et al., 1992; Barria et al., 1997), is capable of decoding the frequency of Ca\(^{2+}\) oscillations in vitro (De Koninck and Schulman, 1998). Likewise, persistent activation of p42/p44 MAPK by membrane depolarization in cultured hippocampal neurons is critically dependent on spacing of individual stimuli (Wu et al., 2001). Our results indicate that p42/p44 MAPK is generally tuned to the absolute levels of synaptic activity, without specific responsiveness to the quality of neurotransmission (i.e., whether the activity derives from evoked or spontaneous release). By contrast, the activity-dependent phosphorylation status of eEF2 is critically dependent on relative levels of AP-dependent and miniature synaptic transmission. When AP-dependent transmission dominates, a sizeable amount of eEF2 is dephosphorylated. However, during AP blockade, when miniature neurotransmission dominates, a marked increase in eEF2 phosphorylation results. We have further shown that this eEF2 phosphorylation is specifically driven by miniature neurotransmission, since increasing (with z-LTX) or removing (with GluR antagonists) the impact of minis produces corresponding increases or decreases in eEF2 phosphorylation. Finally, using restricted perfusion techniques, we have shown that this bidirectional regulation of eEF2 phosphorylation by miniature neurotransmission is implemented in a spatially specific fashion. These results suggest that eEF2 phosphorylation is tuned to local levels of miniature synaptic transmission.

Unique Modes of Translational Inhibition Conferred by AMPAR and NMDAR Minis

Phosphorylation of eEF2 at Thr56 is catalyzed by a Ca\(^{2+}\)/calmodulin-dependent protein kinase (Nairn and Palfrey, 1987). Thus, the fact that minis regulate eEF2 phosphorylation primarily through NMDARs suggests a model in which the Ca\(^{2+}\) influx through the NMDAR engages this phosphorylation step directly, through activation of eEF2 kinase. In support of this notion, the open-channel NMDAR antagonist MK-801, when applied during AP blockade, also drives dendritic protein synthesis (data not shown), suggesting that ion flux through the NMDARs rather than glutamate binding is responsible for the translational suppression. Moreover, the characteristics of eEF2 kinase match well with the small currents generated by miniature release; for example, relative to CAMKII, eEF2 kinase is activated by >5-fold lower Ca\(^{2+}\) concentrations (Hughes et al., 1993) and exhibits approximately two orders of magnitude greater affinity for calmodulin (Mitsui et al., 1993). Thus, whereas CAMKII has been shown to effectively decode aspects of AP-triggered
neurotransmission such as input frequency (e.g., De Koninck and Schulman, 1998), eEF2 kinase seems optimized for decoding asynchronous activity on a dramatically different scale of sensitivity.

Previous studies have indicated that AMPAR and NMDAR minis cooperate in inhibiting dendritic protein synthesis (Sutton et al., 2004). Our results suggest that a major component of the NMDAR-mediated inhibition of local translation involves the phosphorylation (and inactivation) of eEF2. However, whereas blockade of both AMPAR and NMDAR minis enhances protein synthesis to a greater degree than NMDAR mini blockade alone, blockade of NMDAR minis fully accounts for the dephosphorylation of eEF2. These observations suggest that miniature transmission recruits an additional, as of yet unidentified mechanism for local translational suppression through AMPARs. Other studies also support a unique role for the AMPAR component of miniature synaptic transmission in mediating certain aspects of synaptic function. For example, McKinney et al. (1999) demonstrated that miniature synaptic events can maintain spine density in organotypic hippocampal slices during prolonged periods (7 days) of activity deprivation and that the AMPAR component of these events was critically important for this structural stability. Together, these observations suggest unique functional roles for the AMPAR and NMDAR components of excitatory miniature neurotransmission.

Functional Implications of Translational Control at the Level of Elongation

Although diminished rates of protein synthesis are the immediate functional consequences of lowering elongation efficiency, it has been suggested that this means of translational control serves at least two other functions. First, previous studies have demonstrated that, in some circumstances, reducing elongation efficiency can reduce translation error rates (e.g., Thompson and Karim, 1982; Abraham and Pihl, 1983). Given the metabolic cost inherent in long-range mRNA transport into dendrites at distances of hundreds of microns, translational fidelity is presumably of greater importance for local translational control in dendrites than in the soma, where translational capacity is less limiting. Thus, minis may also act to limit missense errors or premature termination of translation at individual synapses, where, based on polyribosome numbers from electron micrographs, it is likely that only a handful of mRNAs can be translated at any one time (e.g., Steward and Reeves, 1988; Ostroff et al., 2002). Second, it has been suggested that reducing elongation efficiency may favor the translation of particular mRNAs and thus serve to alter the complement of mRNAs in the actively translating pool (Walden and Thach, 1986; Scheetz et al., 2000). For example, in synaptoneurosomes prepared from superior colliculus neurons, intense NMDAR stimulation stimulates eEF2 phosphorylation, reduces global protein synthesis by 50%, and yet enhances synthesis of αCAMKII (Scheetz et al., 2000). Importantly, low concentrations of the elongation inhibitor cycloheximide also enhanced αCAMKII synthesis while depressing global translation in synaptoneurosomes, suggesting that the reduction in elongation efficiency itself can be sufficient to drive synthesis of αCAMKII (and possibly other proteins), given the appropriate context. Based on these findings, Scheetz et al. (2000) proposed that NMDAR-dependent phosphorylation of eEF2 could shift the rate-limiting step in local translation from initiation to elongation, which could select particular mRNAs for translation that are normally translated poorly. Thus, it is possible that ongoing miniature transmission alters the propensity for particular mRNAs to be locally translated, either by a mechanism similar to that proposed above or by maintaining the association of specific mRNAs with polyribosomes. It is noteworthy, however, that in our studies we find that local synthesis of a fluorescent translation reporter (which is flanked by the 5’ and 3’ untranslated regions of αCAMKIII) in hippocampal neurons was suppressed by eEF2 phosphorylation driven by NMDAR minis, suggesting that the context provided by miniature synaptic transmission is not permissive for the unique mode of regulation identified by Scheetz et al. (2000). Other studies have demonstrated, for example, that strong NMDAR stimulation produces several biochemical changes that promote translation initiation (e.g., Banko et al., 2004; Kelleher et al., 2004; Gong et al., 2006), raising the question as to how these changes interact with regulation at the level of elongation. Alternatively, the inverse relationship between elongation efficiency and αCAMKII synthesis observed by Scheetz et al. (2000) might depend on a limited mRNA pool, a potential issue that we intentionally circumvent through overexpression of our reporter mRNA. In fact, mini blockade is known to broadly activate synthesis of a number of endogenous proteins (Sutton et al., 2004), suggesting that the conditions of reporter expression we use capture general changes in translational efficiency more strongly than specific regulatory mechanisms unique to αCAMKII. Nevertheless, consistent with the proposal of Scheetz et al. (2000), our results do show that the local phosphorylation of eEF2 in dendrites constrains local protein synthesis, indicating that elongation efficiency can be a limiting condition for local translational control.

Multiple Parallel Mechanisms for Coupling Activity Patterns to the Translation Machinery

A major challenge in studies of local translational control is to understand how specific regulatory mechanisms operate within the highly dynamic nature of activity within neuronal circuits. CA1 hippocampal neurons, for example, are continuously bombarded by activity from any one of the ~30,000 different inputs they receive, yet any one of these inputs may experience extended periods without AP-triggered synaptic activity. Considerable attention has been devoted to the former case, and while important progress has been made in understanding the mechanisms by which evoked activity patterns engage the
protein synthesis machinery to alter synaptic function (for reviews, see Klann and Dever, 2004; Sutton and Schuman, 2005, 2006; Pfeiffer and Huber, 2006), how these unique patterns of activity are decoded by the local translation machinery is still poorly understood. In the latter case, where evoked activity at particular inputs is low, miniature synaptic events appear to serve a local stabilizing role at synapses, preventing runaway scaling of synaptic strength during these periods of inactivity (Sutton et al., 2006). Here, we have identified eEF2 as one of the biochemical sensors that is tuned to miniature synaptic transmission, and show that it contributes to the local translational suppression conferred by miniature events. Moreover, we have shown that intrinsic AP-mediated network activity opposes the impact of miniature transmi-
sion on eEF2 phosphorylation. These results indicate that distinct modes of neurotransmission (AP-dependent versus spontaneous release) are decoded by the transla-
tional apparatus in dendrites, which implies the existence of other decoding mechanisms that act in parallel to link specific features of evoked synaptic activity (e.g., pattern, frequency) with local translational control.

EXPERIMENTAL PROCEDURES

Cell Culture and Infection

Dissociated postnatal (P1–2) rat hippocampal neuron cultures, plated at a density of 230–460 mm² in poly-D-lysine-coated glass-bottom petri dishes (Mattek), were prepared as previously described (Aakalu et al., 2001) and maintained for at least 21 DIV at 37°C in growth medium [Neurobasal A supplemented with B27 and Glutamax-1 (Invitrogen)] prior to use. To analyze dendritic protein synthesis, neurons were infected with a Sindbis viral vector encoding a fluorescent trans-
trogrene) prior to use. To analyze dendritic protein synthesis, neurons were infected with a Sindbis viral vector encoding a fluorescent trans-
trogrene) prior to use. To analyze dendritic protein synthesis, neurons were infected with a Sindbis viral vector encoding a fluorescent trans-

Western Blotting

Neurons were treated in conditioned media with TTX (2 μM) coincident with the addition of APV (250 μM) + APV (60 μM) to the presynaptic compartment. Typically, 10–20 infected neurons had dendrites extending into the microgrooves, and in all cases the virus infected cells only on the virus-applied (postsynaptic) side. After ~9.5 hr, the entire chamber was rinsed with HBS three times, then 300 μl of HBS was applied to the reporter-infected side and 250 μl of TTX (5 μM) was applied to the presynaptic side. After 1–1.5 hr, images were taken every 10 min. Three or four baseline images were taken, then the fluid was removed from the chamber, 300 μl of HBS was added to the presynaptic side, and 250 μl of APV (250 μM) was added to the postsynaptic side. Images were taken every 10 min. We estimate a concentration of APV within the microgrooves sufficient to block NMDARs (45% of 250 μM is 112.5 μM).

The dimensions of the microgrooves (7.5 μm wide, 3 μm high) allow dendrites and axons to enter, but prevent the passage of larger cell bodies. Due to the high fluidic resistance of the microgrooves, a slight volume difference between the two channels (30–50 μl) generates a pressure difference which facilitates the isolation of soluble treat-
ments to one side. For smaller-molecular-weight molecules, which generally have larger diffusion coefficients (e.g., TTX and APV), there is some diffusion within the microgrooves after 3 hr (Figure 1B), which decreases substantially over the 900-μm barrier. Using xy scans of iso-
lated Alexa Fluor 488 (1 μM, MW 570, 3 hr) through the microgrooves, we estimate that the concentration in the proximal 100 μm of the microgroove is <45% of the concentration in the treated side, and <3% in the distal 100 μm. Due to the small cross-sectional area of the micro-

protein synthesis machinery to alter synaptic function (for reviews, see Klann and Dever, 2004; Sutton and Schuman, 2005, 2006; Pfeiffer and Huber, 2006), how these unique patterns of activity are decoded by the local translation machinery is still poorly understood. In the latter case, where evoked activity at particular inputs is low, miniature synaptic events appear to serve a local stabilizing role at synapses, preventing runaway scaling of synaptic strength during these periods of inactivity (Sutton et al., 2006). Here, we have identified eEF2 as one of the biochemical sensors that is tuned to miniature synaptic transmission, and show that it contributes to the local translational suppression conferred by miniature events. Moreover, we have shown that intrinsic AP-mediated network activity opposes the impact of miniature transmission on eEF2 phosphorylation. These results indicate that distinct modes of neurotransmission (AP-dependent versus spontaneous release) are decoded by the translational apparatus in dendrites, which implies the existence of other decoding mechanisms that act in parallel to link specific features of evoked synaptic activity (e.g., pattern, frequency) with local translational control.

EXPERIMENTAL PROCEDURES

Cell Culture and Infection

Dissociated postnatal (P1–2) rat hippocampal neuron cultures, plated at a density of 230–460 mm² in poly-D-lysine-coated glass-bottom petri dishes (Mattek), were prepared as previously described (Aakalu et al., 2001) and maintained for at least 21 DIV at 37°C in growth medium [Neurobasal A supplemented with B27 and Glutamax-1 (Invitrogen)] prior to use. To analyze dendritic protein synthesis, neurons were infected with a Sindbis viral vector encoding a fluorescent trans-

trogene) prior to use. To analyze dendritic protein synthesis, neurons were infected with a Sindbis viral vector encoding a fluorescent trans-

Western Blotting

Neurons were treated in conditioned media with TTX (2 μM) for 12 hr either alone or with CNOX (40 μM) + APV (60 μM) coincident with the last 2 hr of TTX treatment. Samples were collected in lysis buffer containing 100 mM NaCl, 10 mM NaPO₄, 10 mM Na₂HPO₄, 10 mM lysine, 5 mM EDTA, 5 mM EGTA, 50 mM NaF, 1 mM NaVO₃, 1% Triton-X, 0.1% SDS, and 1 tablet Complete Mini protease inhibitor cocktail (Roche)/7 ml (pH 7.4). The samples were centrifuged at top speed in a microfuge for 15 min to remove any insoluble material, then total protein concentrations were determined by a modified Lowry assay (DC protein assay, Biorad). Equal amounts of protein for each sample (20–30 μg) were loaded and separated on 4%–15% Tris-HCl gradient gels, then transferred to polyvinylidene fluoride (PVDF) membranes. Blots were blocked with Tris-buffered saline containing 0.1% Triton-X (TBST), 5% BSA, 50 mM NaF, and 1 mM NaVO₃ for 60 min at room temperature (RT), and incubated with the following rabbit polyclonal primary antibodies (all from Cell Signaling Technology) for either 60 min at RT or overnight at 4°C: anti-phospho Akt (Ser473; 1:1000), anti-total Akt (1:1000), anti-phospho p42/p44 MAPK (Thr202/Tyr204; 1:2000), anti-total p42/p44 MAPK (1:2000), anti-phospho eEF2 (Thr56; 1:500), and anti-total eEF2 (1:500). After extensive washing with TBST, blots were incubated with HRP-conjugated anti-rabbit secondary antibody (1:5000; Jackson Immunoresearch) followed by
chemiluminescent detection (ECL, Amersham Biosciences). Band intensity was quantified with densitometry using NIH Image J, and the ratio of phosphorylated protein to total protein was calculated and expressed relative to the matched control sample. Statistical differences between treatment conditions and control were assessed by Chi square, whereas comparisons between TTX alone and TTX + CNQX+APV were assessed with either paired t tests (two groups) or ANOVA followed by Fisher’s LSD.

Immunocytochemistry

Prior to labeling, neurons were untreated (controls) or treated with TTX (2 μM; 2.5 hr) in conditioned media either alone or with CNQX (40 μM) + APV (60 μM) or APV (60 μM) alone coincident with the last 1.5 hr of TTX treatment. Cells were then fixed on ice for 20 min with 4% paraformaldehyde/4% sucrose in PBS, permeabilized (0.1% Triton-X in PBS, 10 min), and labeled with rabbit polyclonal antibody against p-eEF2 (1:100, 60 min at RT; kindly provided by Dr. A.C. Naim, Dept. Psychiatry, Yale University), followed by immunocytochemical detection with Alexa 488-conjugated anti-rabbit secondary antibody (1:250, 60 min at RT). Neurons were also labeled with either mouse monoclonal anti-MAP2 antibody (1:800; Sigma), followed by Alexa 546-conjugated anti-mouse secondary antibody, or with rhodamine-phallolidin (1:200, 60 min RT; Molecular Probes).

For analysis of immunocytochemistry experiments, images were obtained with Olympus IX-70 or Zeiss LSM 510 laser scanning confocal microscopes using a Plan-Apochromat 63×1.4 oil objective. Alexa 488 and 546 were visualized by excitation with the 488 line of an argon ion laser and the 543 nm line of a HeNe laser, respectively, with emission filters of 505/50 and BP 565-615. Neurons with a pyramidal-like morphology were selected for imaging by epifluorescent visualization of MAP2 or phallolidin staining, to ensure blind sampling of p-eEF2 expression. Identical acquisition parameters were used to acquire images from each treatment condition. For analysis, the principal dendrite of each neuron was linearized using the straighten plug for Image J, and the average nonzero pixel intensity for the p-eEF2 channel was measured for each dendrite. Data for each variable in all groups were normalized to the average value in the respective control groups (untreated or TTX alone). Statistical differences were assessed by ANOVA, followed by Fisher’s LSD post hoc tests.

Live-Cell Reporter Imaging

For experiments examining synthesis of the translation reporter using bath application of eEF2 kinase inhibitors, conditioned media was replaced with HBS containing 1 μM TTX, and neurons were maintained at 37°C for 1.5–2 hr prior to imaging and throughout the experiment. All neurons chosen for experiments had a pyramidal-like morphology with one or two major dendrites emerging from the soma. After a baseline image was acquired, neurons were immediately challenged with rottlerin (5 μM), NH125 (10 μM), or 0.05% DMSO (the vehicle for both rottlerin and NH125), and imaged at 30 or 60 min intervals. Unfortunately, exposures of rottlerin and NH125 >2.5 hr were found to be cytotoxic, precluding analysis of long-term effects of eEF2 kinase inhibition. Anisomycin (40 μM), when used, was applied coincident with the initial replacement of conditioned media with HBS.

All images were acquired in 0.4 μm sections, and z-series were set to span the entire neuronal volume. Image analysis was conducted on maximal intensity z-compressed image stacks. The primary dendrite from each cell was linearized using NIH Image J, and fluorescence intensity was measured as a function of both time and distance from the cell soma. The dendritic compartment was divided into proximal and distal domains, defined by distances of less or greater than, respectively, 125 μm from the soma. Comparable changes in both proximal and distal domains were observed in these experiments, so only the data from the distal dendritic compartment is presented.

Statistical differences in reporter expression (relative to baseline) between groups were assessed by ANOVA and Fisher’s LSD post hoc tests.

Local Perfusion

All local perfusion experiments were performed with an Olympus IX-70 confocal laser scanning microscope using Plan-Apochromat 40×/0.95 air or 40×/1.0 oil objectives. The delivery micropipette was pulled as a typical whole-cell recording pipette with an aperture of ∼0.5 μm. The area of dendrite targeted for local perfusion was controlled by a suction pipette, which was used to draw the treatment solution across one or more dendrites and to remove the perfusate from the bath. Alexa 568 hydrazide (1 μg/ml) was included in the perfusate to visualize the affected area. The 568 nm line of a krypton ion laser was used to visualize Alexa 568 fluorescence (emitted light collected above 600 nm) and to collect differential interference contrast (DIC) images. GFP and Alexa 488 (for p-eEF2 labeling) were excited with the 488 nm line of an argon ion laser, and emitted light was collected between 510 and 550 nm. In all local perfusion experiments, the bath was maintained at 37°C and continuously perfused at 1.5 ml/min with HBS containing 1 μM TTX and other agents as indicated.

For analysis, the size of the treated area was determined in each linearized dendrite based on Alexa 568 fluorescence integrated across all images (typically 6–10) taken during local perfusion. Adjacent nonoverlapping dendritic segments, 25 μm in length, proximal (i.e., toward the cell soma) and distal to the treated area were assigned negative and positive values, respectively.

For experiments examining local regulation of p-eEF2 expression, cells were immediately fixed following local perfusion, and processed for immunostaining as described above. Analysis of p-eEF2 expression in local perfusion experiments was performed on maximal intensity z-compressed image stacks. The average nonzero pixel intensity for the entire length of the dendrite, excluding the treated area, was used to normalize p-eEF2 intensity and was assigned a value of 1. The intensity of p-eEF2 immunofluorescence was then computed for the treated and all untreated dendritic segments and expressed relative to the average nontreated value. Statistical differences in normalized p-eEF2 staining between segments were assessed by ANOVA and Fisher’s LSD post hoc tests.

For experiments examining local synthesis of the translation reporter during local perfusion, reporter expression was determined from maximal intensity z-compressed stacks. Prior to local perfusion, a baseline series of images was acquired to determine the pre-existing trajectory of reporter expression dynamics in both the treated area and untreated areas of dendrites. Reporter expression in all dendritic segments was expressed relative to a baseline image taken 20–40 min prior to local perfusion. The change at each time point for each dendritic segment, excluding the treated area, was averaged and assigned a value of 1 to normalize the change in reporter expression based on the trajectory of the dendrite as a whole. Statistical differences in normalized reporter expression between segments were assessed by ANOVA and Fisher’s LSD post hoc tests.

Supplemental Data

The Supplemental Data for this article can be found online at http://www.neuron.org/cgi/content/full/55/4/648/DC1/.

ACKNOWLEDGMENTS

We thank H. Wield and L. Chen for making beautiful cultured hippocampal neurons, A. Naim for kindly providing the p-eEF2 antibody used for our immunocytochemistry experiments and for helpful discussions, and G. Laurent for solving an experimental conundrum. This work was supported by the Damon Runyon Cancer Research Foundation (M.A.S.) and the NIH (E.M.S.). E.M.S. is an investigator of HHMI.

Received: November 3, 2006
Revised: June 19, 2007
Accepted: July 25, 2007
Published: August 15, 2007
REFERENCES

